Question		on	Answer	Marks	Guidance	
1	(i)		$a = 2, b = \frac{1}{2}$	B1B1		
				[2]		
	(ii)		$y = 2 + \cos \frac{1}{2} x x \leftrightarrow y$		(may be seen later)	
			$x = 2 + \cos \frac{1}{2} y$			
			$\Rightarrow x-2 = \cos \frac{1}{2} y$	M1	subtracting [their] <i>a</i> from both sides (first)	need not substitute for <i>a</i> , <i>b</i>
			$\Rightarrow \arccos(x-2) = \frac{1}{2}y$	M1	$\operatorname{arccos}(x - [\text{their}] a) = [\text{their}] b \times y$	or with $x \leftrightarrow y$, need not subst for a, b
			$\Rightarrow y = f^{-1}(x) = 2\arccos(x-2)$	A1	cao or $2 \cos^{-1}(x-2)$	may be implied by flow diagram
			Domain $1 \le x \le 3$	M1	domain 1 to 3, range 0 to 2π	if not stated, assume first is domain
			Range $0 \le y \le 2\pi$	A1	correctly specified: must be \leq , x for	allow [1, 3], [0, 2π] not 360°
					domain, y or f^{-1} or $f^{-1}(x)$ for range	(not f)
				[5]		

2	(i)	At P(a, a) $g(a) = a \text{ so } \frac{1}{2}(e^a - 1) = a$			
		\Rightarrow $e^a = 1 + 2a *$	B1	NB AG	
			[1]		
	(ii)	$A = \int_0^a \frac{1}{2} (e^x - 1) dx$	M1	correct integral and limits	limits can be implied from subsequent work
		$=\frac{1}{2}\left[e^{x}-x\right]_{0}^{a}$	B1	integral of $e^x - 1$ is $e^x - x$	
		$= \frac{1}{2} (e^{a} - a - e^{0})$	A1		
		$= \frac{1}{2}(1 + 2a - a - 1) = \frac{1}{2}a^{*}$	A1	NB AG	
		area of triangle = $\frac{1}{2}a^2$	B1		
		area between curve and line = $\frac{1}{2}a^2 - \frac{1}{2}a$	B1cao [6]	mark final answer	

PhysicsAndMathsTutor.com

Question		n er	Marks	Guidance	
2	(iii)	$y = \frac{1}{2}(e^x - 1)$ swap x and y			
		$x = \frac{1}{2} (e^{y} - 1)$			
		$\Rightarrow 2x = e^y - 1$	M1	Attempt to invert – one valid step	merely swapping x and y is not 'one step'
		$\Rightarrow 2x + 1 = e^{y}$	A1		
		$\Rightarrow \ln(2x+1) = y^*$	A1	$y = \ln(2x + 1)$ or $g(x) = \ln(2x + 1)$ AG	apply a similar scheme if they start with $g(x)$ and invert to get $f(x)$.
		\Rightarrow g(x) = ln(2x + 1)			or g f(x) = g(($e^x - 1$)/2) M1
		Sketch: recognisable attempt to reflect in $y = x$	M1	through O and (a, a)	$= \ln(1 + e^x - 1) = \ln(e^x) A1 = x A1$
		Good shape	A1	no obvious inflexion or TP, extends to third quadrant, without gradient becoming too negative	similar scheme for fg See appendix for examples
			[5]		
	(iv)	$f'(x) = \frac{1}{2} e^x$	B1		
		g'(x) = 2/(2x + 1)	M1	1/(2x + 1) (or $1/u$ with $u = 2x + 1)$	
			A1	× 2 to get $2/(2x + 1)$	
		$g'(a) = 2/(2a+1)$, $f'(a) = \frac{1}{2} e^{a}$	B 1	either $g'(a)$ or $f'(a)$ correct soi	
		so $g'(a) = 2/e^a$ or $f'(a) = \frac{1}{2}(2a+1)$	M1	substituting $e^a = 1 + 2a$	either way round
		$= 1/(\frac{1}{2}e^{a}) = (a+1)/2$	A1	establishing f '(a) = 1/ g '(a)	
		[= 1/f'(a)] $[= 1 '(a)]$			
		tangents are reflections in $y = x$	B1	must mention tangents	
			[7]		

3	(i)	Range is $-1 \le y \le 3$	M1	-1, 3
			A1	$-1 \le y \le 3 \text{ or } -1 \le f(x) \le 3 \text{ or } [-1, 3] \text{ (not } -1 \text{ to } 3, -1 \le x \le 3, -1 < y < 3 \text{ etc})$
			[2]	
3	(ii)	$y = 1 - 2\sin x \ x \leftrightarrow y$		[can interchange x and y at any stage]
		$x = 1 - 2\sin y \Longrightarrow x - 1 = -2\sin y$	M1	attempt to re-arrange
		\Rightarrow sin y = (1 - x)/2	A1	o.e. e.g. $\sin y = (x - 1)/(-2)$ (or $\sin x = (y - 1)/(-2)$)
		$\Rightarrow y = \arcsin\left[(1-x)/2\right]$	A1	or $f^{-1}(x) = \arcsin [(1 - x)/2]$, not x or $f^{-1}(y) = \arcsin [1 - y)/2]$ (viz must have swapped x and y for final 'A' mark).
			[3]	$\arcsin [(x-1)/-2]$ is A0
3	(iii)	$f'(x) = -2\cos x$	M1	condone 2cos x
		\Rightarrow f'(0) = -2	A1	cao
		\Rightarrow gradient of $y = f^{-1}(x)$ at $(1, 0) = -\frac{1}{2}$	A1	not 1/- 2
			[3]	

Question		Answer	Marks	Guidance	
4	(i)	$y = 2 \operatorname{arc} \sin \frac{1}{2} = 2 \times \frac{\pi}{6}$ $= \frac{\pi}{3}$	M1 A1 [2]	$y = 2 \arcsin \frac{1}{2}$ must be in terms of π – can isw approximate answers	1.047 implies M1
	(ii)	$y = 2 \arcsin x \qquad x \leftrightarrow y$ $\Rightarrow \qquad x = 2 \arcsin y$ $\Rightarrow \qquad x/2 = \arcsin y$ $\Rightarrow \qquad y = \sin (x/2) [\operatorname{so} g(x) = \sin (x/2)]$ $\Rightarrow \qquad dy/dx = \frac{1}{2} \cos(\frac{1}{2}x)$ At Q, $x = \frac{\pi}{3}$ $\Rightarrow \qquad dy/dx = \frac{1}{2} \cos \frac{\pi}{6} = \frac{1}{2} \sqrt{3}/2 = \sqrt{3}/4$ $\Rightarrow \qquad \text{gradient at P} = \frac{4}{\sqrt{3}}$	M1 A1 A1cao M1 A1 B1 ft [6]	or $y/2 = \arcsin x$ but must interchange x and y at some stage substituting their $\pi/3$ into their derivative must be exact, with their $\cos(\pi/6)$ evaluated o.e. e.g. $4\sqrt{3}/3$ but must be exact ft their $\sqrt{3}/4$ unless 1	or f'(x) = $2/\sqrt{(1-x^2)}$ f'($\frac{1}{2}$) = $2/\sqrt{\frac{3}{4}}$ = $4/\sqrt{3}$ cao

5(i) When $x = 0$, $f(x) = a = 2^*$ When $x = \pi$, $f(\pi) = 2 + \sin b\pi = 3$ $\Rightarrow \sin b\pi = 1$ $\Rightarrow b\pi = \frac{1}{2}\pi$, so $b = \frac{1}{2}^*$ or $1 = a + \sin (-\pi b) (= a - \sin \pi b)$ $3 = a + \sin (\pi b)$ $\Rightarrow 2 = 2 \sin \pi b$, $\sin \pi b = 1$, $\pi b = \pi/2$, $b = \frac{1}{2}$ $\Rightarrow 3 = a + 1$ or $1 = a - 1 \Rightarrow a = 2$ (oe for b)	B1 M1 A1 [3]	NB AG 'a is the y-intercept' not enough but allow verification $(2+\sin 0 = 2)$ or when $x = -\pi$, $f(-\pi) = 2 + \sin (-b\pi) = 1$ $\Rightarrow \sin(-b\pi) = -1$ condone using degrees $\Rightarrow -b\pi = -\frac{1}{2}\pi$, $b = \frac{1}{2}$ NB AG M1 for both points substituted A1 solving for b or a A1 substituting to get a (or b)	or equiv transformation arguments : e.g. 'curve is shifted up 2 so $a = 2$ '. e.g. period of sine curve is 4π , or stretched by sf. 2 in <i>x</i> -direction (not squeezed or squashed by $\frac{1}{2}$) $\Rightarrow b = \frac{1}{2}$ If verified allow M1A0 If $y = 2 + \sin \frac{1}{2} x$ verified at two points, SC2 A sequence of sketches starting from $y = \sin x$ showing clearly the translation and the stretch (in either order) can earn full marks
(ii) $f'(x) = \frac{1}{2} \cos \frac{1}{2} x$ $\Rightarrow f'(0) = \frac{1}{2}$ Maximum value of $\cos \frac{1}{2} x$ is 1 \Rightarrow max value of gradient is $\frac{1}{2}$	M1 A1 A1 M1 A1 [5]		
(iii) $y = 2 + \sin \frac{1}{2} x x \leftrightarrow y$ $x = 2 + \sin \frac{1}{2} y$ $\Rightarrow x - 2 = \sin \frac{1}{2} y$ $\Rightarrow \arcsin(x - 2) = \frac{1}{2} y$ $\Rightarrow y = f^{-1}(x) = 2\arcsin(x - 2)$ Domain $1 \le x \le 3$ Range $-\pi \le y \le \pi$ Gradient at (2, 0) is 2	M1 A1 A1 B1 B1 B1ft [6]	Attempt to invert formula or $\arcsin(y - 2) = \frac{1}{2} x$ must be $y = \dots$ or $f^{-1}(x) = \dots$ or $[1, 3]$ or $[-\pi, \pi]$ or $-\pi \le f^{-1}(x) \le \pi$ ft their answer in (ii) (except ±1) 1/their $\frac{1}{2}$	viz solve for x in terms of y or vice-versa – one step enough condone use of a and b in inverse function, e.g. $[\arcsin(x - a)]/b$ or $\sin^{-1}(y - 2)$ condone no bracket for 1 st A1 only or $2\sin^{-1}(x - 2)$, condone f'(x), must have bracket in final ans but not $1 \le y \le 3$ but not $-\pi \le x \le \pi$. Penalise <'s (or '1 to 3', ' $-\pi$ to π ') once only or by differentiating $\arcsin(x - 2)$ or implicitly
(iv) $A = \int_{0}^{\pi} (2 + \sin \frac{1}{2}x) dx$ $= \left[2x - 2\cos \frac{1}{2}x \right]_{0}^{\pi}$ $= 2\pi - (-2)$ $= 2\pi + 2 (= 8.2831)$	M1 M1 A1 A1cao [4]	correct integral and limits $\begin{bmatrix} 2x - k \cos \frac{1}{2}x \end{bmatrix}$ where <i>k</i> is positive <i>k</i> = 2 answers rounding to 8.3	soi from subsequent work, condone no dx but not 180 Unsupported correct answers score 1^{st} M1 only.