Question		Answer$a=2, b=1 / 2$	$\begin{gathered} \hline \text { Marks } \\ \hline \text { B1B1 } \\ \text { [2] } \\ \hline \end{gathered}$	Guidance	
1	(i)				
	(ii)	$\begin{array}{ll} & y=2+\cos 1 / 2 x \quad x \leftrightarrow y \\ & x=2+\cos 1 / 2 y \\ \Rightarrow \quad & x-2=\cos 1 / 2 y \\ \Rightarrow \quad & \arccos (x-2)=1 / 2 y \\ \Rightarrow \quad & y=f^{-1}(x)=2 \arccos (x-2) \\ & \text { Domain } 1 \leq x \leq 3 \\ & \text { Range } 0 \leq y \leq 2 \pi \end{array}$	$\begin{aligned} & \text { M1 } \\ & \text { M1 } \\ & \text { A1 } \\ & \text { M1 } \\ & \text { A1 } \\ & {[5]} \end{aligned}$	(may be seen later) subtracting [their] a from both sides (first) $\arccos (x-[$ their $] a)=[$ their $] b \times y$ cao or $2 \cos ^{-1}(x-2)$ domain 1 to 3 , range 0 to 2π correctly specified: must be \leq, x for domain, y or f^{-1} or $f^{-1}(x)$ for range	need not substitute for a, b or with $x \leftrightarrow y$, need not subst for a, b may be implied by flow diagram if not stated, assume first is domain allow [1, 3], $[0,2 \pi]$ not 360° (not f)

2	(i)	$\begin{aligned} & \text { At } \mathrm{P}(a, a) \mathrm{g}(a)=a \text { so } 1 / 2\left(\mathrm{e}^{a}-1\right)=a \\ & \Rightarrow \quad \mathrm{e}^{a}=1+2 a^{*} \end{aligned}$	$\begin{aligned} & \text { B1 } \\ & \text { [1] } \\ & \hline \end{aligned}$	NB AG	
	(ii)	$\begin{aligned} & A=\int_{0}^{a} \frac{1}{2}\left(\mathrm{e}^{x}-1\right) \mathrm{d} x \\ & =\frac{1}{2}\left[\mathrm{e}^{x}-x\right]_{0}^{a} \\ & =1 / 2\left(\mathrm{e}^{a}-a-\mathrm{e}^{0}\right) \\ & =1 / 2(1+2 a-a-1)=1 / 2 a^{*} \\ & \text { area of triangle }=1 / 2 a^{2} \\ & \text { area between curve and line }=1 / 2 a^{2}-1 / 2 a \end{aligned}$	$\begin{gathered} \text { M1 } \\ \text { B1 } \\ \text { A1 } \\ \text { A1 } \\ \text { B1 } \\ \text { B1cao } \\ {[6]} \end{gathered}$	correct integral and limits integral of $\mathrm{e}^{x}-1$ is $\mathrm{e}^{x}-x$ NB AG mark final answer	limits can be implied from subsequent work

PhysicsAndMathsTutor.com

3	(i)	Range is - $1 \leq y \leq 3$	M1 A1 [2]	$\begin{aligned} & -1,3 \\ & -1 \leq y \leq 3 \text { or }-1 \leq \mathrm{f}(x) \leq 3 \text { or }[-1,3] \text { (not }-1 \text { to } 3,-1 \leq x \leq 3,-1<y<3 \text { etc) } \end{aligned}$
3	(ii)	$\begin{aligned} & y=1-2 \sin x \quad x \leftrightarrow y \\ & x=1-2 \sin y \Rightarrow x-1=-2 \sin y \\ & \Rightarrow \quad \sin y=(1-x) / 2 \\ & \Rightarrow \quad y=\arcsin [(1-x) / 2] \end{aligned}$	M1 A1 A1 [3]	[can interchange x and y at any stage] attempt to re-arrange o.e. e.g. $\sin y=(x-1) /(-2)($ or $\sin x=(y-1) /(-2))$ or $\mathrm{f}^{-1}(x)=\arcsin [(1-x) / 2]$, not x or $\left.\mathrm{f}^{-1}(y)=\arcsin [1-y) / 2\right]$ (viz must have swapped x and y for final 'A' mark). $\arcsin [(x-1) /-2]$ is A0
3	(iii)	$\begin{aligned} & \mathrm{f}^{\prime}(x)=-2 \cos x \\ & \Rightarrow \quad \mathrm{f}^{\prime}(0)=-2 \\ & \Rightarrow \quad \text { gradient of } y=\mathrm{f}^{-1}(x) \text { at }(1,0)=-1 / 2 \end{aligned}$	M1 A1 A1 [3]	condone $2 \cos x$ cao not 1/- 2

Question		Answer$\begin{aligned} y=2 \operatorname{arc} \sin 1 / 2 & =2 \times \pi / 6 \\ & =\pi / 3 \end{aligned}$	Marks M1 A1 [2]	Guidance	
4	(i)			$y=2 \arcsin 1 / 2$ must be in terms of π - can isw approximate answers	1.047... implies M1
	(ii)	$\begin{array}{\|ll} \hline & y=2 \arcsin x \quad x \leftrightarrow y \\ \Rightarrow & x=2 \arcsin y \\ \Rightarrow & x / 2=\arcsin y \\ \Rightarrow & y=\sin (x / 2)[\operatorname{sog}(x)=\sin (x / 2)] \\ \Rightarrow & \mathrm{d} y / \mathrm{d} x=1 / 2 \cos (1 / 2 x) \\ & \mathrm{At} \mathrm{Q}, x=\pi / 3 \\ \Rightarrow & \mathrm{~d} y / \mathrm{d} x=1 / 2 \cos \pi / 6=1 / 2 \sqrt{ } 3 / 2=\sqrt{ } 3 / 4 \\ \Rightarrow & \text { gradient at } \mathrm{P}=4 / \sqrt{ } 3 \end{array}$	M1 A1 A1cao M1 A1 B1 ft [6]	or $y / 2=\arcsin x$ but must interchange x and y at some stage substituting their $\pi / 3$ into their derivative must be exact, with their $\cos (\pi / 6)$ evaluated o.e. e.g. $4 \sqrt{ } 3 / 3$ but must be exact ft their $\sqrt{ } 3 / 4$ unless 1	$\begin{aligned} & \text { or } \mathrm{f}^{\prime}(x)=2 / \sqrt{ }\left(1-x^{2}\right) \\ & \mathrm{f}^{\prime}(1 / 2)=2 / \sqrt{3} / 4=4 / \sqrt{ } 3 \text { cao } \end{aligned}$

$\begin{aligned} \hline \text { 5(i) } & \text { When } x=0, \mathrm{f}(x)=a=2^{*} \\ & \text { When } x=\pi, \mathrm{f}(\pi)=2+\sin b \pi=3 \\ \Rightarrow & \sin b \pi=1 \\ \Rightarrow & b \pi=1 / 2 \pi, \text { so } b=1 / 2 * \\ \text { or } & 1=a+\sin (-\pi b)(=a-\sin \pi b) \\ & 3=a+\sin (\pi b) \\ \Rightarrow & 2=2 \sin \pi b, \sin \pi b=1, \pi b=\pi / 2, b=1 / 2 \\ \Rightarrow & 3=a+1 \text { or } 1=a-1 \Rightarrow a=2(\text { oe for } b) \end{aligned}$	B1 M1 A1 [3]	NB AG ' a is the y-intercept' not enough but allow verification $(2+\sin 0=2)$ or when $x=-\pi, \mathrm{f}(-\pi)=2+\sin (-b \pi)=1$ $\Rightarrow \sin (-b \pi)=-1$ condone using degrees $\Rightarrow-b \pi=-1 / 2 \pi, b=1 / 2$ NB AG M1 for both points substituted A1 solving for b or a A1 substituting to get a (or b)	or equiv transformation arguments : e.g. 'curve is shifted up 2 so $a=2$ '. e.g. period of sine curve is 4π, or stretched by sf. 2 in x-direction (not squeezed or squashed by $1 / 2$) $\Rightarrow b=1 / 2$ If verified allow M1A0 If $y=2+\sin 1 / 2 x$ verified at two points, SC2 A sequence of sketches starting from $y=\sin x$ showing clearly the translation and the stretch (in either order) can earn full marks
$\begin{array}{ll} \hline \text { (ii) } & \mathrm{f}^{\prime}(x)=1 / 2 \cos 1 / 2 x \\ \Rightarrow & \mathrm{f}^{\prime}(0)=1 / 2 \\ & \text { Maximum value of } \cos 1 / 2 x \text { is } 1 \\ \Rightarrow & \text { max value of gradient is } 1 / 2 \end{array}$	$\begin{aligned} & \text { M1 } \\ & \text { A1 } \\ & \text { A1 } \\ & \text { M1 } \\ & \text { A1 } \\ & {[5]} \end{aligned}$	$\pm k \cos 1 / 2 x$ cao WWW or $\mathrm{f}^{\prime \prime}(x)=-1 / 4 \sin 1 / 2 x$ $\mathrm{f}^{\prime \prime}(x)=0 \Rightarrow x=0$, so max val of $\mathrm{f}^{\prime}(x)$ is $1 / 2$	
$\begin{array}{ll} \text { (iii) } & y=2+\sin 1 / 2 x x \leftrightarrow y \\ & x=2+\sin 1 / 2 y \\ \Rightarrow & x-2=\sin 1 / 2 y \\ \Rightarrow & \arcsin (x-2)=1 / 2 y \\ \Rightarrow \quad & y=\mathrm{f}^{-1}(x)=2 \arcsin (x-2) \\ & \text { Domain } 1 \leq x \leq 3 \\ & \text { Range }-\pi \leq y \leq \pi \\ & \text { Gradient at }(2,0) \text { is } 2 \end{array}$	M1 A1 A1 B1 B1 B1ft [6]	Attempt to invert formula or $\arcsin (y-2)=1 / 2 x$ must be $y=\ldots$ or $\mathrm{f}^{-1}(x)=\ldots$ or $[1,3]$ or $[-\pi, \pi]$ or $-\pi \leq \mathrm{f}^{-1}(x) \leq \pi$ ft their answer in (ii) (except ± 1) $1 /$ their $1 / 2$	viz solve for x in terms of y or vice-versa - one step enough condone use of a and b in inverse function, e.g. $[\arcsin (x-a)] / b$ or $\sin ^{-1}(y-2)$ condone no bracket for $1^{\text {st }}$ A1 only or $2 \sin ^{-1}(x-2)$, condone $\mathrm{f}^{\prime}(x)$, must have bracket in final ans but not $1 \leq y \leq 3$ but not $-\pi \leq x \leq \pi$. Penalise $<$'s (or ' 1 to 3 ',' $-\pi$ to π ') once only or by differentiating $\arcsin (x-2)$ or implicitly
$\text { (iv) } \quad \begin{aligned} A & =\int_{0}^{\pi}\left(2+\sin \frac{1}{2} x\right) \mathrm{d} x \\ & =\left[2 x-2 \cos \frac{1}{2} x\right]_{0}^{\pi} \\ & =2 \pi-(-2) \\ & =2 \pi+2(=8.2831 \ldots) \end{aligned}$	$\begin{aligned} & \text { M1 } \\ & \text { M1 } \\ & \text { A1 } \\ & \text { A1cao } \\ & \text { [4] } \end{aligned}$	correct integral and limits $\left[2 x-k \cos \frac{1}{2} x\right]$ where k is positive $k=2$ answers rounding to 8.3	soi from subsequent work, condone no $\mathrm{d} x$ but not 180 Unsupported correct answers score $1^{\text {st }}$ M1 only.

